Credit Hours: 3-4 Semester Hours Prerequisite: Digital Electronics (OET002) **Related TAG:** Electrical Engineering Technology **General Course Description:** This course includes microprocessor/microcontroller architecture, instruction sets, software development, interrupt handling, memory, interfacing techniques, and hardware used in control applications designed with microprocessor/ microcontrollers. Includes hands-on labs. Student learning outcomes marked with an asterisk (*) are essential and must be met. | TAG Learning Outcomes | Applied skills strongly demonstrated | Some applied skills
present | Little applied skills
present | No applied skills present | |---|---|---|---|--| | 1. Explain microprocessor architecture.* | Describe the steps in executing an instruction and how each part of the architecture interreacts for the key parts and programmer accessible CPU registers. | • | Explain the function of the key parts. Explain the purpose of each programmer accessible CPU register. | Describe the key parts of a Microprocessor architecture- CPU, memory, three busses and ports. State the programmer accessible CPU registers. | | 2. Utilize assembly language programming to develop code for a microprocessor.* | Design, code and test an assembly language program including iteration Design, code and test an assembly language program that interacts with a devise connected to a port. Design, code and test an assembly language, program using assembler directives. | Design, code and test a simple straight-line assembly language program. Design, code and test an assembly language program including iteration. Describe assembler directives and what they are used for. Write an assembly language program using | Translate machine instructions to assembler instructions and vice versa. Assemble, download and run an existing program. Explain the function of the stack and subroutines. State several ways to create needed timing | Explain what assembly language is and how it relates to machine language. Explain what an assembler is. Define stack and subroutines and why they are important. Explain why time consideration is important in | | | Design, code and test an assembly language program using the stack and subroutines. Design, code and test an assembly language program using time delays. Download and debug an assembly language using interrupts. | the stack and subroutines Write an assembly language program using programmer accessible CPU registers. Write an assembly language program using time delays. Write an assembly language program using interrupts. | and what each might be used for. • Explain why interrupts are important and what they are used for. | Microcontroller programming. • Describe what interrupts are. | |--|---|---|---|--| | 3. Explain and utilize bus timing diagrams.* | Sketch a timing diagram
for several assembly
language instructions
including the individual
control signals. | Identify and give the
function for the
individual control
signals in the control
bus. | | | | 4. Demonstrate an understanding of and applications for bus structures.* | Describe how each bus
is used in executing a
write-to-port
instruction. | • Describe how each bus is used in an instruction fetch and execute. | Describe the function of each bus. | List the three main busses. | | 5. Utilize memory technologies and interfacing in microprocessors.* | Describe the sequence
for writing and reading
from a memory chip in
terms of the memory
connections. | Describe the connections to a memory chip and what each does. | Describe how each
memory technology
works and what each is
typically used for. | Identify the various
memory technologies | | 6. Implement input/output (I/O) systems, I/O interface requirements, and interrupt based I/O.* | Test the program using lights and switches. Debug using debugging tools in the monitor or operating system. Download and test a program using interrupt based I/O. | Assemble and debug at the assembler level a program that interfaces with lights and switches. Write, assemble and debug at the assembler level a program using interrupt based I/O | Code a program that interfaces with lights and switches. Design a program using interrupt based I/O. | Design a program that interfaces with lights and switches. Explain how interrupt based I/O works. | | 7. Utilize direct memory access (DMA) in microprocessor applications.* | Design, build and test a
system using DMA and
DMA controller. | Describe the function of
a DMA controller. | Identify the different approaches to DMA. | Describe the purpose of DMA. | |---|---|---|---|--| | 8. Utilize microprocessors/microcontr ollers in a variety of applications.* | Test and debug a system using two or more peripherals. | Assemble and debug the code at the assembler level using two or more peripherals. | Code the program using
two or more peripherals
and assemble the
electronic hardware. | Design a system using
two or more peripherals
at the block diagram
and flow chart level | Note that this TAG should be updated to include programming with the C language since most of the programming now is done with C or C-like languages.